metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Le-Qing Fan and Ji-Huai Wu*

Institute of Materials Physical Chemistry, Huaqiao University, Quanzhou, Fujian 362021, People's Republic of China

Correspondence e-mail: jhwu@hqu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.006 Å R factor = 0.035 wR factor = 0.125 Data-to-parameter ratio = 20.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

(*N*,*N*-Dimethyldithiocarbamato- $\kappa^2 S, S'$)iodo-(1,10-phenanthroline- $\kappa^2 N, N'$)copper(II)

In the title complex, $[Cu(C_3H_6NS_2)I(C_{12}H_8N_2)]$, the Cu^{II} atom is coordinated by one iodide ion, two N atoms from a phenanthroline ligand and two S atoms from a dimethyl-dithiocarbamate ligand in a distorted square-pyramidal environment.

Comment

The study of transition metal complexes has attracted much attention because of their fascinating structural diversity, as well as their potential applications as functional materials and enzymes (Noro *et al.*, 2000; Yaghi *et al.*, 1998). Dialkyldithiocarbamate anions, which are typical sulfur ligands, acting as monodentate, bidentate or bridging ligands, are often chosen for the preparation of a considerable structural variety of complexes (Englhardt *et al.*, 1988; Fernández *et al.*, 2000; Koh, *et al.*, 2003). We report here the crystal structure of the title mononuclear copper(II) complex, (I), containing a dimethyl-dithiocarbamate ligand.

The molecular structure of (I) is shown in Fig. 1. The Cu^{II} atom is five-coordinated in a distorted square-pyramidal environment by one I atom in the apical position, two N atoms from a phenanthroline ligand and two S atoms from a dimethyldithiocarbamate ligand in the basal plane (Table 1).

Experimental

A mixture of $Cu(OAc)_2$ ·H₂O (0.08 g, 0.4 mmol), NaS₂CNMe₂·2H₂O (0.09 g, 0.4 mmol), 1,10-phenanthroline (0.08 g 0.4 mmol) and NaI·2H₂O (0.07 g, 0.4 mmol) was stirred in dimethylformamide (15 ml). 2-PrOH was diffused into the resulting solution, yielding single crystals of (I).

Crystal data $[Cu(C_3H_6NS_2)I(C_{12}H_8N_2)]$ Z = 4 $D_r = 1.858 \text{ Mg m}^{-3}$ $M_{\rm m} = 490.85$ Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation a = 9.0506 (5) Å $\mu = 3.24 \text{ mm}^{-1}$ b = 11.3701 (7) Å T = 293 (2) K c = 17.1085 (11) Å Prism, black $\beta = 94.490(5)^{\circ}$ $0.26 \times 0.25 \times 0.2$ mm V = 1755.17 (18) Å³

© 2006 International Union of Crystallography All rights reserved

Received 25 October 2006 Accepted 27 October 2006

Data collection

Rigaku Mercury CCD diffractometer ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2000) $T_{\min} = 0.411, T_{\max} = 0.520$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.125$ S = 0.924019 reflections 199 parameters H-atom parameters constrained 13281 measured reflections 4019 independent reflections 3553 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$ $\theta_{\text{max}} = 27.5^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^2) + (0.1032P)^2 \\ &+ 0.0145P] \\ &where \ P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} = 0.001 \\ \Delta\rho_{\rm max} = 0.84 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.68 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

Table 1

Selected geometric parameters (Å, $^{\circ}$).

Cu1-N2	2.021 (3)	Cu1-S1	2.3111 (11)
Cu1-N3	2.034 (3)	Cu1-I1	2.9378 (5)
Cu1-S2	2.2963 (11)		
N2-Cu1-N3	81.47 (13)	S2-Cu1-S1	76.87 (4)
N2-Cu1-S2	164.03 (10)	N2-Cu1-I1	91.81 (9)
N3-Cu1-S2	97.95 (10)	N3-Cu1-I1	95.60 (10)
N2-Cu1-S1	99.50 (9)	S2-Cu1-I1	104.10 (3)
N3-Cu1-S1	164.63 (11)	S1-Cu1-I1	99.69 (3)

H atoms were positioned geometrically and refined in the ridingmodel approximation, with C-H = 0.93 (aromatic) or 0.96 Å (methyl) and $U_{iso}(H) = 1.2U_{eq}(C)$ (aromatic) or $1.5U_{eq}(C)$ (methyl).

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL.

Figure 1

The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).

This work was supported financially by the National Natural Science Foundation of China (Nos. 50572030, 50372022) and the Research Fund of Huaqiao University (No. 06BS216)

References

- Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Englhardt, L. M., Healy, P. C., Shephard, R. M., Skelton, B. W. & White, A. W. (1988). *Inorg. Chem.* 27, 2371–2373.
- Fernández, E. J., López-de-Luzuriaga, J. M., Monge, M., Olmos, E., Laguna, A., Villacampa, M. D. & Jones, P. G. (2000). J. Cluster Sci. 11, 153–166.
- Koh, Y. W., Lai, C. S., Du, A. Y., Tiekink, E. R. T. & Loh, K. P. (2003). Chem. Mater. 15, 4544–4554.
- Noro, S., Kitagawa, S., Kondo, M. & Seki, K. (2000). Angew. Chem. Int. Ed. 39, 2081–2084.
- Rigaku (2000). CrystalClear. Version 1.3. Rigaku Corporation, Akishima, Tokyo, Japan.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yaghi, O. M., Li, H., David, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.